Modified alginate and chitosan for lactic acid bacteria immobilization
Beads with enhanced-stability acid media, which were based on alginate and chitosan functionalized by succinylation (increasing the anionic charges able to retain protons) or by acylation (improving matrix hydrophobicity), were developed for immobilization of bacterial cells. Beads (3 mm diameter) f...
Gespeichert in:
Veröffentlicht in: | Biotechnology and applied biochemistry 2004-06, Vol.39 (3), p.347-354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beads with enhanced-stability acid media, which were based on alginate and chitosan functionalized by succinylation (increasing the anionic charges able to retain protons) or by acylation (improving matrix hydrophobicity), were developed for immobilization of bacterial cells. Beads (3 mm diameter) formed by ionotropic gelation with CaCl2 presented good mechanical characteristics. After 30 min incubation of viable free Lactobacillus rhamnosus cells in simulated gastric fluid (pH 1.5), we noticed that the level of viable bacteria was undetectable. Bacterial immobilization in native-alginate-based beads generated a viable-cell count of 22-26%, whereas, when entrapped in succinylated alginate and chitosan beads, the percentage of viable cells was of 60 and 66%, respectively. Best viability (87%) was found for bacteria immobilized in N-palmitoylaminoethyl alginate, which affords a high protective effect, probably due to long alkyl pendants that improve the beads' hydrophobicity, limiting hydration in the acidic environment. |
---|---|
ISSN: | 0885-4513 1470-8744 |
DOI: | 10.1042/BA20030158 |