DNA binding and 3'-5' exonuclease activity in the murine alternatively-spliced p53 protein

In this study we show that the naturally occurring C-terminally alternative spliced p53 (referred to as AS-p53) is active as a sequence-specific DNA binding protein as well as a 3'-5'-exonuclease in the presence of Mg2+ ions. The two activities are positively correlated as the sequence-spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2002-08, Vol.21 (33), p.5117-5126
Hauptverfasser: SHAKKED, Zippora, YAVNILOVITCH, Michael, KALB, A. Joseph, KESSLER, Naama, WOLKOWICZ, Roland, ROTTER, Varda, HARAN, Tali E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study we show that the naturally occurring C-terminally alternative spliced p53 (referred to as AS-p53) is active as a sequence-specific DNA binding protein as well as a 3'-5'-exonuclease in the presence of Mg2+ ions. The two activities are positively correlated as the sequence-specific DNA target is more efficiently degraded than a non-specific target. In contrast, a mutated AS-p53 protein that is deficient in DNA binding lacks exonuclease activity. The use of modified p53 binding sites, where the 3'-phosphate is replaced by a phosphorothioate group, enabled the inhibition of DNA degradation under the binding conditions. We demonstrate that AS-p53 interacts with its specific DNA target by two distinct binding modes: a high-affinity mode characterized by a low-mobility protein-DNA complex at the nanomolar range, and a low-affinity mode shown by a high-mobility complex at the micromolar range. Comparison of the data on the natural and the modified p53 binding sites suggests that the high-affinity mode is related to AS-p53 function as a transcription factor and that the low-affinity mode is associated with its exonuclease activity. The implications of these findings to a specific cellular role of AS-p53 are discussed.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1205667