Segmental variability of ENaC subunit expression in rat colon during dietary sodium depletion
In rat distal colon, aldosterone has little effect on Na(+) channel (ENaC) alpha-subunit levels but increases the expression of the beta- and gamma-subunits and stimulates electrogenic Na(+) transport. By contrast, the molecular basis of aldosterone's inability to stimulate electrogenic Na(+) t...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2002-07, Vol.444 (4), p.476-483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In rat distal colon, aldosterone has little effect on Na(+) channel (ENaC) alpha-subunit levels but increases the expression of the beta- and gamma-subunits and stimulates electrogenic Na(+) transport. By contrast, the molecular basis of aldosterone's inability to stimulate electrogenic Na(+) transport in the proximal colon is unclear. We therefore compared the effects of hyperaldosteronism secondary to 10 days dietary Na(+) depletion on ENaC subunit expression in rat proximal and distal colon. Northern analyses revealed appreciable and similar levels of alpha-subunit mRNA throughout the colon in control and Na(+)-depleted animals. By contrast, Na(+) depletion substantially enhanced beta-subunit mRNA expression in the distal colon, but had no effect on the low expression levels of beta-subunit mRNA in the proximal colon. Expression of the gamma-subunit, evaluated by PCR, was also restricted to the distal colon of Na(+)-depleted animals. Western analyses demonstrated similar levels of alpha-subunit protein in the proximal and distal colon of both groups of animals, whereas beta-subunit and gamma-subunit proteins were detected solely or predominantly in the distal colon of the Na(+)-depleted animals. Immunocytochemistry confirmed that significant levels of all three subunit proteins only occurred in the apical membrane of surface cells in the distal colon of Na(+)-depleted animals. Our findings are consistent with previous studies demonstrating that aldosterone stimulates electrogenic Na(+) transport in rat distal colon by increasing the expression of beta- and gamma-subunit mRNA and protein, and thus the amount of functional heteromeric ENaC protein in the apical domain. They also show that aldosterone is incapable of stimulating electrogenic Na(+) transport in rat proximal colon (despite the presence of alpha-subunit mRNA and protein) because of its inability to enhance beta- and gamma-subunit expression in this segment. |
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/s00424-002-0828-7 |