Additional Disruption of the ClC-2 Cl- Channel Does Not Exacerbate the Cystic Fibrosis Phenotype of Cystic Fibrosis Transmembrane Conductance Regulator Mouse Models

Cystic fibrosis is a fatal inherited disease that is caused by mutations in the gene encoding a cAMP-activated chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). It has been suggested that the cystic fibrosis phenotype might be modulated by the presence of other Cl - c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-05, Vol.279 (21), p.22276-22283
Hauptverfasser: Zdebik, Anselm A, Cuffe, John E, Bertog, Marko, Korbmacher, Christoph, Jentsch, Thomas J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cystic fibrosis is a fatal inherited disease that is caused by mutations in the gene encoding a cAMP-activated chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). It has been suggested that the cystic fibrosis phenotype might be modulated by the presence of other Cl - channels that are coexpressed with CFTR in some epithelial cells. Because the broadly expressed plasma membrane Cl - channel, ClC-2, is present in the tissues whose function is compromised in cystic fibrosis, we generated mice with a disruption of both Cl - channel genes. No morphological changes in their intestine, lung, or pancreas, tissues affected by cystic fibrosis, were observed in these mice. The mortality was not increased over that observed with a complete lack of functional CFTR. Surprisingly, mice expressing mutant CFTR (deletion of phenylalanine 508), survived longer when ClC-2 was disrupted additionally. Currents across colonic epithelia were investigated in Ussing chamber experiments. The disruption of ClC-2, in addition to CFTR, did not decrease Cl - secretion. Colon expressing wild-type CFTR even secreted more Cl - when ClC-2 was disrupted, although CFTR transcript levels were unchanged. It is concluded that ClC-2 is unlikely to be a candidate rescue channel in cystic fibrosis. Our data are consistent with a model in which ClC-2 is located in the basolateral membrane.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M309899200