Sensory Inputs Stimulate Progenitor Cell Proliferation in an Adult Insect Brain

Although most brain neurons are produced during embryonic and early postnatal development, recent studies clearly demonstrated in a wide range of species from invertebrates to humans that new neurons are added to specific brain structures throughout adult life. Hormones, neurotransmitters, and growt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2002-06, Vol.12 (12), p.1001-1005
Hauptverfasser: Scotto-Lomassese, Sophie, Strambi, Colette, Aouane, Aı̈cha, Strambi, Alain, Cayre, Myriam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although most brain neurons are produced during embryonic and early postnatal development, recent studies clearly demonstrated in a wide range of species from invertebrates to humans that new neurons are added to specific brain structures throughout adult life. Hormones, neurotransmitters, and growth factors as well as environmental conditions modulate this neurogenesis [1–9]. In this study, we address the role of sensory inputs in the regulation of adult neural progenitor cell proliferation in an insect model. In some insect species, adult neurogenesis occurs in the mushroom bodies [10], the main sensory integrative centers of the brain, receiving multimodal information [11, 12] and often considered as the analog of the vertebrate hippocampus. We recently showed that rearing adult crickets in enriched sensory and social conditions enhanced neuroblast proliferation in the mushroom bodies [13]. Here, by manipulating hormonal levels and affecting olfactory and/or visual inputs, we show that environmental regulation of neurogenesis is in direct response to olfactory and visual stimuli rather than being mediated via hormonal control. Experiments of unilateral sensory deprivation reveal that neuroblast proliferation can be inhibited in one brain hemisphere only. These results, obtained in a relatively simple brain, emphasize the role of sensory inputs on stem cell division.
ISSN:0960-9822
1879-0445
DOI:10.1016/S0960-9822(02)00889-8