An amino‐terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid

Summary Aggregation substance (AS), a plasmid‐encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS‐mediated aggregation of enterococcal cells could involve the binding of this protein to cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2004-05, Vol.52 (4), p.1159-1171
Hauptverfasser: Waters, Christopher M., Hirt, Helmut, McCormick, John K., Schlievert, Patrick M., Wells, Carol L., Dunny, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Aggregation substance (AS), a plasmid‐encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS‐mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N‐terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N‐terminal fragment from amino acids 44–331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10(156−358) aggregation domain was also required for efficient internalization of E. faecalis into HT‐29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N‐terminal domain that promotes binding to LTA and a second domain located near the middle of the protein.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2004.04045.x