O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide

The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. At birth, functional closure of the DA is initiated by an O2-induced, vasoconstrictor mechanism which, though modulated by endothelialderived endothelin and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological chemistry 2004-03, Vol.385 (3-4), p.205-216
Hauptverfasser: Archer, S. L., Wu, X.-C., Thébaud, B., Moudgil, R., Hashimoto, K., Michelakis, E.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. At birth, functional closure of the DA is initiated by an O2-induced, vasoconstrictor mechanism which, though modulated by endothelialderived endothelin and prostaglandins, is intrinsic to the smooth muscle cell (DASMC) [Michelakis et al., Circ. Res. 91 (2002); pp. 478-486]. As pO2 increases, a mitochondrial O2-sensor (electron transport chain complexes I or III) is activated, which generates a diffusible redox mediator (H2O2). H2O2 inhibits voltagegated K+ channels (Kv) in DASMC. The resulting membrane depolarization activates Ltype Ca2+ channels, thereby promoting vasoconstriction. Conversely, inhibiting mitochondrial ETC complexes I or III mimics hypoxia, depolarizing mitochondria, and decreasing H2O2 levels. The resulting increase in K+ current hyperpolarizes the DASMC and relaxes the DA. We have developed two models for study of the DAs O2-sensor pathway, both characterized by decreased O2-constriction and Kv expression: (i) preterm rabbit DA, (ii) ionicallyremodeled, human term DA. The O2-sensitive channels Kv1.5 and Kv2.1 are important to DA O2-constriction and overexpression of either channel enhances DA constriction in these models. Understanding this O2-sensing pathway offers therapeutic targets to modulate the tone and patency of human DA in vivo, thereby addressing a common form of congenital heart disease in preterm infants.
ISSN:1431-6730
DOI:10.1515/BC.2004.014