Effects of betaine in a murine model of mild cystathionine-β-synthase deficiency
Cystathionine-β-synthase (CBS) is required for transsulfuration of homocysteine, an amino acid implicated in vascular disease. We studied homocysteine metabolism in mice with mild hyperhomocysteinemia due to a heterozygous disruption of the Cbs gene. Mice were fed diets supplemented with betaine or...
Gespeichert in:
Veröffentlicht in: | Metabolism, clinical and experimental clinical and experimental, 2004-05, Vol.53 (5), p.594-599 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cystathionine-β-synthase (CBS) is required for transsulfuration of homocysteine, an amino acid implicated in vascular disease. We studied homocysteine metabolism in mice with mild hyperhomocysteinemia due to a heterozygous disruption of the
Cbs gene. Mice were fed diets supplemented with betaine or dimethylsulfonioacetate (DMSA); betaine and DMSA provide methyl groups for an alternate pathway of homocysteine metabolism, remethylation by betaine:homocysteine methyltransferase (BHMT). On control diets, heterozygous mice had 50% higher plasma homocysteine than did wild-type mice. Betaine and DMSA had similar effects in both genotype groups: liver betaine increased dramatically, while plasma homocysteine decreased by 40% to 50%. With increasing betaine supplementation, homocysteine decreased by 75%. Plasma homocysteine and BHMT activity both showed a strong negative correlation with liver betaine. Homocysteinemia in mice is sensitive to a disruption of
Cbs and to methyl donor intake. Because betaine leads to a greater flux through BHMT and lowers homocysteine, betaine supplementation may be beneficial in mild hyperhomocysteinemia. |
---|---|
ISSN: | 0026-0495 1532-8600 |
DOI: | 10.1016/j.metabol.2003.10.033 |