Periodic density functional theory study of methane activation over La(2)O(3): activity of O(2-), O(-), O(2)(2-), oxygen point defect, and Sr(2+)-doped surface sites

Results of gradient-corrected periodic density functional theory calculations are reported for hydrogen abstraction from methane at O(s)(2-), O(s)(-), O(2)(s)(2-) point defect, and Sr(2+)-doped surface sites on La(2)O(3)(001). The results show that the anionic O(s)(-) species is the most active surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2002-07, Vol.124 (28), p.8452-8461
Hauptverfasser: Palmer, Michael S, Neurock, Matthew, Olken, Michael M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Results of gradient-corrected periodic density functional theory calculations are reported for hydrogen abstraction from methane at O(s)(2-), O(s)(-), O(2)(s)(2-) point defect, and Sr(2+)-doped surface sites on La(2)O(3)(001). The results show that the anionic O(s)(-) species is the most active surface oxygen site. The overall reaction energy to activate methane at an O(s)(-) site to form a surface hydroxyl group and gas-phase (*)CH(3) radical is 8.2 kcal/mol, with an activation barrier of 10.1 kcal/mol. The binding energy of hydrogen at an site O(s)(-) is -102 kcal/mol. An oxygen site with similar activity can be generated by doping strontium into the oxide by a direct Sr(2+)/La(3+) exchange at the surface. The O(-)-like nature of the surface site is reflected in a calculated hydrogen binding energy of -109.7 kcal/mol. Calculations indicate that surface peroxide (O(2(s))(2-)) sites can be generated by adsorption of O(2) at surface oxygen vacancies, as well as by dissociative adsorption of O(2) across the closed-shell oxide surface of La(2)O(3)(001). The overall reaction energy and apparent activation barrier for the latter pathway are calculated to be only 12.1 and 33.0 kcal/mol, respectively. Irrespective of the route to peroxide formation, the O(2)(s)(2-) intermediate is characterized by a bent orientation with respect to the surface and an O-O bond length of 1.47 A; both attributes are consistent with structural features characteristic of classical peroxides. We found surface peroxide sites to be slightly less favorable for H-abstraction from methane than the O(s)(-) species, with DeltaE(rxn)(CH(4)) = 39.3 kcal/mol, E(act) = 47.3 kcal/mol, and DeltaE(ads)(H) = -71.5 kcal/mol. A possible mechanism for oxidative coupling of methane over La(2)O(3)(001) involving surface peroxides as the active oxygen source is suggested.
ISSN:0002-7863