Cooperation of Protein Kinase A and Ras/ERK Signaling Pathways Is Required for AP-1-mediated Activation of Fibroblast Growth Factor-inducible Response Element (FiRE)

Recent studies suggest a crucial role for protein kinase A (PKA) in the regulation of growth factor signaling. However, the effect of PKA on the transcription of growth factor-responsive genes has drawn far less attention. Here we have investigated the signaling mechanisms involved in the activation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-07, Vol.277 (28), p.25344-25355
Hauptverfasser: Pursiheimo, Juha-Pekka, Saari, Jussi, Jalkanen, Markku, Salmivirta, Markku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies suggest a crucial role for protein kinase A (PKA) in the regulation of growth factor signaling. However, the effect of PKA on the transcription of growth factor-responsive genes has drawn far less attention. Here we have investigated the signaling mechanisms involved in the activation of an activator protein-1 (AP-1)-driven, growth factor-specific enhancer element, fibroblast growth factor-inducible response element (FiRE). The activation was found to be mediated by three phorbol 12-O-tetradecanoate-13-acetate-response element-related DNA elements of FiRE, including motif 4 and two distinct elements of motif 5 (referred to as M5-1 and M5-2). All three elements were required for full FiRE activity. Stimulation of cells with fibroblast growth factor-2 (FGF-2) induced the binding of AP-1 to motif 4 and M5-2, whereas M5-1 did not show detectable binding. The FGF-2-induced FiRE activation appeared to require cooperational function of the Ras/ERK and PKA pathways. Inhibition of either of the pathways abolished the binding of AP-1 complexes to motif 4 and motif 5 and the subsequent FiRE activation. By contrast, costimulation of cells with FGF-2 and the PKA activator 8-bromo-cyclic AMP increased the binding of AP-1 to FiRE and potentiated the level of transcriptional activity. The cooperational function of these two pathways was confirmed by experiments with cell lines stably expressing 4-hydroxytamoxifen-inducible oncogenic Raf-1 (ΔRaf-1:ER[DD]). Noticeably, the induction systems showed variations with respect to regulation of AP-1-driven activation of FiRE. These differences were likely to originate from the ability of these two systems to induce the differential activation pattern of the Ras/ERK pathway.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112381200