An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties

Abstract During physiological loading, a tendon is subjected to tensile strains in the region of up to 6 per cent. These strains are reportedly transmitted to cells, potentially initiating specific mechano-transduction pathways. The present study examines the local strain fields within tendon fascic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2004-03, Vol.218 (2), p.109-119
Hauptverfasser: Screen, H R C, Lee, D A, Bader, D L, Shelton, J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract During physiological loading, a tendon is subjected to tensile strains in the region of up to 6 per cent. These strains are reportedly transmitted to cells, potentially initiating specific mechano-transduction pathways. The present study examines the local strain fields within tendon fascicles subjected to tensile strain in order to determine the mechanisms responsible for fascicle extension. A hierarchical approach to the analysis was adopted, involving micro and macro examination. Micro examination was carried out using a custom-designed rig, to enable the analysis of local tissue strains in isolated fascicles, using the cell nuclei as strain markers. In macro examination, a video camera was used to record images of the fascicles during mechanical testing, highlighting the point of crimp straightening and macro failure. Results revealed that local tensile strains within a collagen fibre were consistently smaller than the applied strain and showed no further increase once fibres were aligned. By contrast, between-group displacements, a measure of fibre sliding, continued to increase beyond crimp straightening, reaching a mean value of 3.9 per cent of the applied displacement at 8 per cent strain. Macro analysis displayed crimp straightening at a mean load of 1 N and sample failure occurred through the slow unravelling of the collagen fibres. Fibre sliding appears to provide the major mechanism enabling tendon fascicle extension within the rat-tail tendon. This process will necessarily affect local and cellular strains and consequently mechanotransduction pathways.
ISSN:0954-4119
2041-3033
DOI:10.1243/095441104322984004