HIV Envelope Induces a Cascade of Cell Signals in Non-Proliferating Target Cells That Favor Virus Replication

Certain HIV-encoded proteins modify host-cell gene expression in a manner that facilitates viral replication. These activities may contribute to low-level viral replication in nonproliferating cells. Through the use of oligonucleotide microarrays and high-throughput Western blotting we demonstrate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-07, Vol.99 (14), p.9380-9385
Hauptverfasser: Cicala, Claudia, Arthos, James, Selig, Sara M., Dennis, Glynn, Hosack, Douglas A., Van Ryk, Donald, Spangler, Marion L., Steenbeke, Tavis D., Khazanie, Prateeti, Gupta, Neil, Yang, Jun, Daucher, Marybeth, Lempicki, Richard A., Fauci, Anthony S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Certain HIV-encoded proteins modify host-cell gene expression in a manner that facilitates viral replication. These activities may contribute to low-level viral replication in nonproliferating cells. Through the use of oligonucleotide microarrays and high-throughput Western blotting we demonstrate that one of these proteins, gp120, induces the expression of cytokines, chemokines, kinases, and transcription factors associated with antigen-specific T cell activation in the absence of cellular proliferation. Examination of transcriptional changes induced by gp120 in freshly isolated peripheral blood mononuclear cells and monocyte-derived-macrophages reveals a broad and complex transcriptional program conducive to productive infection with HIV. Observations include the induction of nuclear factor of activated T cells, components of the RNA polymerase II complex including TFII D, proteins localized to the plasma membrane, including several syntaxins, and members of the Rho protein family, including Cdc 42. These observations provide evidence that envelope-mediated signaling contributes to the productive infection of HIV in suboptimally activated T cells.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.142287999