Optimizing the determination of haloacetic acids in drinking waters

Three methods are currently approved by the US Environmental Protection Agency for the compliance monitoring of haloacetic acids in drinking waters. Each derivatizes the acids to their corresponding esters using either acidic methanol or diazomethane. This study was undertaken to characterize the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2004-04, Vol.1035 (1), p.9-16
Hauptverfasser: Domino, Mark M, Pepich, Barry V, Munch, David J, Fair, Patricia S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three methods are currently approved by the US Environmental Protection Agency for the compliance monitoring of haloacetic acids in drinking waters. Each derivatizes the acids to their corresponding esters using either acidic methanol or diazomethane. This study was undertaken to characterize the extent of methylation of these analytes by these methods, and to fully optimize methylation chemistries to improve analytical sensitivity, precision and accuracy. The approved methods were shown to have little to no esterification efficiencies for the brominated trihaloacetic acids (HAA3). Methylation with acidic methanol was determined to be more efficient and rugged than methylation with diazomethane. A new higher boiling solvent, tertiary-amyl methyl ether, is reported which has significantly improved methylation efficiencies for HAA3. Additional modifications to the method have been made that improve method ruggedness. The revised method, EPA Method 552.3, outperforms the currently approved methods, especially for HAA3.
ISSN:0021-9673
DOI:10.1016/j.chroma.2004.02.034