Radiopacity in bone cements using an organo-bismuth compound
In a joint replacement surgery it is vital for bone cement to be radiologically detectable. Consequently, heavy metal salts of barium and zirconia are incorporated as a contrast medium for this purpose. The addition of such particulate additives, however, can be detrimental to some of the physical,...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2002-08, Vol.23 (16), p.3387-3393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a joint replacement surgery it is vital for bone cement to be radiologically detectable. Consequently, heavy metal salts of barium and zirconia are incorporated as a contrast medium for this purpose. The addition of such particulate additives, however, can be detrimental to some of the physical, mechanical and biological properties. The present study reports the feasibility of using an organo-bismuth compound, namely, triphenyl bismuth (TPB) as a radiopaque agent for orthopaedic bone cements. TPB was incorporated in the bone cement matrix by two methods, (i) blending: TPB was added to the polymer phase of the bone cement and (ii) dissolution: by dissolving TPB in the monomer phase methylmethacrylate. The results showed that the inclusion of TPB at concentrations of 15% and 25% by weight of the polymer, in the bone cement matrix did not affect the polymerisation exotherm temperature and setting time. Furthermore, the addition of TPB via the dissolution method provided a statistically significant increase in the strain to failure in comparison to commercial acrylic cements containing barium sulphate, thus reducing the brittleness of the cement. The detrimental effects on the mechanical properties post conditioning in water, was also much less pronounced in the homogeneous TPB cements in comparison to barium sulphate containing cements. These observations can be attributed to the formation of a homogeneous and continuous matrix of the resultant bone cement with a much lower porosity. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/S0142-9612(02)00039-X |