Prolonged 24-hour subzero preservation of heterotopically transplanted rat hearts using antifreeze proteins derived from arctic fish

Arctic fish survive subzero temperatures by producing a family of antifreeze proteins (AFPs) that noncolligatively lower the freezing temperature of their body fluids. We report 24-hour storage of mammalian hearts for transplantation at subzero temperatures using AFPs derived from arctic fish. Forty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of thoracic surgery 2004-05, Vol.77 (5), p.1648-1655
Hauptverfasser: Amir, Gabriel, Rubinsky, Boris, Horowitz, Liana, Miller, Liron, Leor, Jonathan, Kassif, Yigal, Mishaly, David, Smolinsky, Aram K, Lavee, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arctic fish survive subzero temperatures by producing a family of antifreeze proteins (AFPs) that noncolligatively lower the freezing temperature of their body fluids. We report 24-hour storage of mammalian hearts for transplantation at subzero temperatures using AFPs derived from arctic fish. Forty-two heterotopic transplantations were performed in isoimmune Sprague-Dawley rats. Harvested hearts were retrogradely infused with cold 4°C University of Wisconsin (UW) solution and were preserved in a specialized cooling bath at two target temperatures, 4°C and −1.3°C for 12,18, and 24 hours (6 experiments/group). Preservation solutions were UW alone for the 4°C group, and UW with 15 mg/mL AFP III for the −1.3°C group. After hypothermic storage the hearts were heterotopically transplanted into isoimmune rats. Viability was assessed and graded on a scale of 0 to 6 (0 = no contractions to 6 = excellent contractions). Transplanted hearts were then fixed in vivo and were subject to electron microscopy and histopathologic examination. None of the hearts preserved at −1.3°C in UW/AFP III solution froze. All control hearts preserved at −1.3°C without AFP protection froze and died at reperfusion. Viability of hearts preserved at −1.3°C in UW/AFP III solution was significantly better after 18 hours of preservation, 30 and 60 minutes after reperfusion (median, 5 versus 3 and 6 versus 3, respectively; p < 0.05) and after 24 hours of preservation 30 and 60 minutes after reperfusion (median, 4.5 versus 1.5 and 5 versus 2, respectively; p < 0.05). Histologic and electron microscopy studies demonstrated better myocyte structure and mitochondrial integrity preservation with UW/AFP III solution. Antifreeze proteins prevent freezing in subzero cryopreservation of mammalian hearts for transplantation. Subzero preservation prolongs ischemic times and improves posttransplant viability.
ISSN:0003-4975
1552-6259
DOI:10.1016/j.athoracsur.2003.04.004