Age- and sex-dependent laterality of rat hippocampal cholinergic system in relation to animal models of neurodevelopmental and neurodegenerative disorders

Studies suggest age- and sex-dependent structural and functional patterns of human cerebral lateralization underlie hemisphere specialization and its alterations in schizophrenia. Recent works report sexual dimorphism of neurons in the hippocampal formation and specialization of hemispheres in rats....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2004-04, Vol.29 (4), p.671-680
Hauptverfasser: Kristofiková, Zdena, Stástný, Frantisek, Bubeniková, Vera, Druga, Rastislav, Klaschka, Jan, Spaniel, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies suggest age- and sex-dependent structural and functional patterns of human cerebral lateralization underlie hemisphere specialization and its alterations in schizophrenia. Recent works report sexual dimorphism of neurons in the hippocampal formation and specialization of hemispheres in rats. Our experiments indicate for the first time functional lateralization of the high-affinity choline uptake (HACU) system directly associated with a synthesis of acetylcholine in the hippocampus of Wistar rats. The markedly increased HACU activity was found in the left compared to the right hippocampus of adult male but not female animals. Lineweaver-Burk plot analysis revealed a statistically significant increase of Vmax in the left hippocampus of 14-day-old when compared to 7-day-old males. It appears that laterality of HACU occurs during late postnatal maturation, and its degree is markedly enhanced after puberty and attenuated during aging. Quinolinic acid (QUIN), an endogenous agonist of N-methyl-D-aspartate type glutamate receptors, was used in this study to evaluate the neurodevelopmental hypothesis of schizophrenia. It is known that elevated levels of QUIN accompany viral infections, increasing the risk of developing schizophrenia. Bilateral intracerebroventricular application of QUIN (250 nmoles/ventricle) to pups aged 12 days significantly impaired the cholinergic hippocampal system of adolescent male and female rats and reversed lateralization of male HACU. Morphological analysis indicated marked changes in brain lesion sizes (extensive 24 h and moderate 38 days after the operation). Asymmetry of lesions was observed in the majority of cases, but the left hemisphere was not generally more vulnerable to QUIN effects than the right side. Moreover, no lateral differences were found between lesioned hippocampi in the specific binding of [3H]hemicholinium-3 (10%-15% loss of binding sites when compared to sham-operated animals). In summary, our results indicate a symmetrical drop in the number of choline carriers of lesioned male rats but a asymmetrical decrease in the activity of remaing carriers, suggesting defects in processes of sexual brain differentiation, leading under normal conditions to the higher activity of carriers in the left hippocampus. The data demonstrate viral infection-mediated alterations in normal patterns of brain asymmetry and are discussed in relation to animal models of neurodevelopmental and neurodegenerative diseases.
ISSN:0364-3190
1573-6903
DOI:10.1023/B:NERE.0000018837.27383.ff