Synthesis, SAR, and Biological Evaluation of Oximino-Piperidino-Piperidine Amides. 1. Orally Bioavailable CCR5 Receptor Antagonists with Potent Anti-HIV Activity

We previously reported the discovery of 4-[(Z)-(4-bromophenyl)(ethoxyimino)methyl]-1‘-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4‘-methyl-1,4‘-bipiperidine N-oxide 1 (SCH 351125) as an orally bioavailable human CCR5 antagonist for the treatment of HIV-1 infection. Herein, we describe in detail the discov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2002-07, Vol.45 (14), p.3143-3160
Hauptverfasser: Palani, Anandan, Shapiro, Sherry, Josien, Hubert, Bara, Thomas, Clader, John W, Greenlee, William J, Cox, Kathleen, Strizki, Julie M, Baroudy, Bahige M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously reported the discovery of 4-[(Z)-(4-bromophenyl)(ethoxyimino)methyl]-1‘-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4‘-methyl-1,4‘-bipiperidine N-oxide 1 (SCH 351125) as an orally bioavailable human CCR5 antagonist for the treatment of HIV-1 infection. Herein, we describe in detail the discovery of 1 from our initial lead compound as well as the synthesis and SAR studies directed toward optimization of substitution at the phenyl, oxime, and right-hand side amide groups in the oximino-piperidino-piperidine series. Substitutions (4-Br, 4-CF3, 4-OCF3, 4-SO2Me, and 4-Cl) at the phenyl group are well-tolerated, and small alkyl substitutions (Me, Et, n Pr, i Pr, and cyclopropyl methyl) at the oxime moiety are preferred for CCR5 antagonism. The 2,6-dimethylnicotinamide N-oxide moiety is the optimal choice for the right-hand side. Several compounds in this series, including compound 1, exhibited excellent antiviral activity in vitro. Compound 1, which has a favorable pharmacokinetic profile in rodents and primates, excellent oral bioavailability, and potent antiviral activity against a wide range of primary HIV-1 isolates, is a potentially promising new candidate for treatment of HIV-1 infection.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm0200815