Matched-field processing gain degradation caused by tidal flow over continental shelf bathymetry
Temporally variable, range dependent sound-speed profiles measured during ebb flow and estimated for slack flow are used to quantify the variability of matched-field signal-processing gain degradation in shallow water propagation channels controlled by tidally driven stratified flow over variable ba...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2002-06, Vol.111 (6), p.2615-2620 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Temporally variable, range dependent sound-speed profiles measured during ebb flow and estimated for slack flow are used to quantify the variability of matched-field signal-processing gain degradation in shallow water propagation channels controlled by tidally driven stratified flow over variable bathymetry. Calculations along a 9.3 km range establish phase changes in the acoustic signal as the primary cause of a 3-9 dB degradation in the coherent matched-field processing output of a full water column vertical array. The work indicates that over a tidal cycle acoustic signal properties and matched-field processing gain can be expected to change continuously in a shallow water stratified channel that has bathymetry variability. Acoustic signals propagating in such tidal flow-controlled environments may be expected to display repeatable (over successive tidal cycles) and predictable changes in their phase coherent properties. These results suggest that matched-field processor replica fields used in the shelf/slope propagation environment will have to be updated regularly during a tidal cycle to maintain maximum processor gain. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.1472496 |