Hyperkalemia: An adaptive response in chronic renal insufficiency
Hyperkalemia: An adaptive response in chronic renal insufficiency. Hyperkalemia is a common feature of chronic renal insufficiency, usually ascribed to impaired K+ homeostasis. However, various experimental observations suggest that the increase in extracellular [K+] actually functions in a homeosta...
Gespeichert in:
Veröffentlicht in: | Kidney international 2002-07, Vol.62 (1), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperkalemia: An adaptive response in chronic renal insufficiency.
Hyperkalemia is a common feature of chronic renal insufficiency, usually ascribed to impaired K+ homeostasis. However, various experimental observations suggest that the increase in extracellular [K+] actually functions in a homeostatic fashion, directly stimulating renal K+ excretion through an effect that is independent of, and additive to, aldosterone.
We have reviewed relevant studies in experimental animals and in human subjects that have examined the regulation of K+ excretion and its relation to plasma [K+].
Studies indicate that (1) extracellular [K+] in patients with renal insufficiency correlates directly with intracellular K+ content, and (2) hyperkalemia directly promotes K+ secretion in the principal cells of the collecting duct by increasing apical and basolateral membrane conductances. The effect of hyperkalemia differs from that of aldosterone in that K+ conductances are increased as the primary event. The changes in principal cell function and structure induced by hyperkalemia are indistinguishable from the effects seen in adaptation to a high K+ diet.
We propose that hyperkalemia plays a pivotal role in K+ homeostasis in renal insufficiency by stimulating K+ excretion. In patients with chronic renal insufficiency, a new steady state develops in which extracellular [K+] rises to the level needed to stimulate K+ excretion so that it again matches intake. When this new steady state is achieved, plasma [K+] remains stable unless dietary intake increases, glomerular filtration rate falls, or drugs are given that disrupt the new balance. |
---|---|
ISSN: | 0085-2538 1523-1755 |
DOI: | 10.1046/j.1523-1755.2002.00350.x |