Suppressor of cytokine signaling-1 overexpression protects pancreatic beta cells from CD8+ T cell-mediated autoimmune destruction

In type 1 diabetes, cytokine action on beta cells potentially contributes to beta cell destruction by direct cytotoxicity, inducing Fas expression, and up-regulating class I MHC and chemokine expression to increase immune recognition. To simultaneously block beta cell responsiveness to multiple cyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2004-05, Vol.172 (9), p.5714-5721
Hauptverfasser: Chong, Mark M W, Chen, Ye, Darwiche, Rima, Dudek, Nadine L, Irawaty, Windy, Santamaria, Pere, Allison, Janette, Kay, Thomas W H, Thomas, Helen E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In type 1 diabetes, cytokine action on beta cells potentially contributes to beta cell destruction by direct cytotoxicity, inducing Fas expression, and up-regulating class I MHC and chemokine expression to increase immune recognition. To simultaneously block beta cell responsiveness to multiple cytokines, we overexpressed suppressor of cytokine signaling-1 (SOCS-1). This completely prevented progression to diabetes in CD8(+) TCR transgenic nonobese diabetic (NOD) 8.3 mice without affecting pancreas infiltration and partially prevented diabetes in nontransgenic NOD mice. SOCS-1 appeared to protect at least in part by inhibiting TNF- and IFN-gamma-induced Fas expression on beta cells. Fas expression was up-regulated on beta cells in vivo in prediabetic NOD8.3 mice, and this was inhibited by SOCS-1. Additionally, IFN-gamma-induced class I MHC up-regulation and TNF- and IFN-gamma-induced IL-15 expression by beta cells were inhibited by SOCS-1, which correlated with suppressed 8.3 T cell proliferation in vitro. Despite this, 8.3 T cell priming in vivo appeared unaffected. Therefore, blocking beta cell responses to cytokines impairs recognition by CD8(+) T cells and blocks multiple mechanisms of beta cell destruction, but does not prevent T cell priming and recruitment to the islets. Our findings suggest that increasing SOCS-1 expression may be useful as a strategy to block CD8(+) T cell-mediated type 1 diabetes as well as to more generally prevent cytokine-dependent tissue destruction in inflammatory diseases.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.172.9.5714