Distinctive roles for 2',5'-oligoadenylate synthetases and double-stranded RNA-dependent protein kinase R in the in vivo antiviral effect of an adenoviral vector expressing murine IFN-beta

To evaluate the anti-HSV-1 mechanisms of murine IFN-beta in ocular infection, mice were transduced with an adenoviral vector expressing murine IFN-beta (Ad:IFN-beta). Ocular transduction with Ad:IFN-beta resulted in enhanced survival following infection with HSV-1. The protective effect was associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2004-05, Vol.172 (9), p.5638-5647
Hauptverfasser: Al-Khatib, Khaldun, Williams, Bryan R G, Silverman, Robert H, Halford, William, Carr, Daniel J J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the anti-HSV-1 mechanisms of murine IFN-beta in ocular infection, mice were transduced with an adenoviral vector expressing murine IFN-beta (Ad:IFN-beta). Ocular transduction with Ad:IFN-beta resulted in enhanced survival following infection with HSV-1. The protective effect was associated with a reduction in 1) viral titer, 2) viral gene expression, 3) IFN-gamma levels, and 4) the percentage of CD8(+) T lymphocyte and NK cell infiltration in infected tissue. Expression of IFN-beta resulted in an elevation of the IFN-induced antiviral gene 2',5'-oligoadenylate synthetase (OAS1a) but not dsRNA-dependent protein kinase R (PKR) in the cornea and trigeminal ganglion (TG). Mice deficient in the downstream effector molecule of the OAS pathway, RNase L, were no more sensitive to ocular HSV-1 compared with wild-type controls in the TG based on measurements of viral titer. However, the efficacy of Ad:IFN-beta was transiently lost in the eyes of RNase L mice. By comparison, PKR-deficient mice were more susceptible to ocular HSV-1 infection, and the antiviral efficacy following transduction with Ad:IFN-beta was significantly diminished in the eye and TG. These results suggest that PKR is central in controlling ocular HSV-1 infection in the absence of exogenous IFN, whereas the OAS pathway appears to respond to exogenous IFN, contributing to the establishment of an antiviral environment in a tissue-restricted manner.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.172.9.5638