Spectrum of genetic changes in gastro-esophageal cancer cell lines determined by an integrated molecular cytogenetic approach

Adenocarcinomas arising around the gastro-esophageal junction (GEJ) are highly malignant, and their incidence has risen rapidly in the last decades. Cell lines are the basic in vitro system for functional and therapeutic studies in GEJ tumors, but only a small number of cell lines are currently avai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer genetics and cytogenetics 2002-05, Vol.135 (1), p.35-41
Hauptverfasser: Rosenberg, Carla, Geelen, Eric, IJszenga, Marije J, Pearson, Peter, Tanke, Hans J, Dinjens, Winand N.M, van Dekken, Herman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adenocarcinomas arising around the gastro-esophageal junction (GEJ) are highly malignant, and their incidence has risen rapidly in the last decades. Cell lines are the basic in vitro system for functional and therapeutic studies in GEJ tumors, but only a small number of cell lines are currently available, and none of them has been fully karyotyped. We analyzed 5 GEJ tumor cell lines using a combination of 24-color fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH) and genomic microarrays. Using CGH we demonstrated that these cell lines present imbalances similar to those we had previously observed in primary GEJ tumors, namely gains on 1q, 7q, 8q, 17q, 19q, 20, and X, and losses on 3p, 4, 5q, 9p, 18q, and 21. Multicolor FISH karyotyping revealed multiple structural rearrangements involving chromosomes 1, 5, 6, 7, 8, 9, 13, 17, 18, and 22. Rearrangements of chromosome 8 involved 10 different chromosomes, while rearrangements of chromosome 17 involved 5. Different rearrangements resulted in imbalances of similar chromosome regions, suggesting that similar genomic imbalances are constitutively important but are achieved through different pathways. The use of a commercially available genomic array excluded TOP2A (17q), and MYBL2, PTPT1, CSE1L, and ZNF217 (20q) as candidate genes for frequently amplified areas on these chromosomes, and contributed to refining the limits of chromosome regions involved in genomic imbalances.
ISSN:0165-4608
1873-4456
DOI:10.1016/S0165-4608(01)00639-2