Mixed-Model Regression Analysis and Dealing with Interindividual Differences

This chapter considers mixed-model regression analysis, which is a specific technique for analyzing longitudinal data that properly deals with within- and between-subjects variance. The term ‘‘mixed model’’ refers to the inclusion of both fixed effects, which are model components used to define syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 2004, Vol.384, p.139-171
Hauptverfasser: Van Dongen, Hans P.A, Olofsen, Erik, Dinges, David F, Maislin, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This chapter considers mixed-model regression analysis, which is a specific technique for analyzing longitudinal data that properly deals with within- and between-subjects variance. The term ‘‘mixed model’’ refers to the inclusion of both fixed effects, which are model components used to define systematic relationships such as overall changes over time and/ or experimentally induced group differences; and random effects, which account for variability among subjects around the systematic relationships captured by the fixed effects. To illustrate how the mixed-model regression approach can help analyze longitudinal data with large inter-individual differences, the psychomotor vigilance data is considered from an experiment involving 88 h of total sleep deprivation, during which subjects received either sustained low-dose caffeine or placebo. The traditional repeated-measures analysis of variance (ANOVA) is applied, and it is shown that that this method is not robust against systematic interindividual variability. The data are then reanalyzed using linear mixed-model regression analysis in order to properly take into account the interindividual differences. The study concludes with an application of nonlinear mixed-model regression analysis of the data at hand, to demonstrate the considerable potential of this relatively novel statistical approach.
ISSN:0076-6879
1557-7988
DOI:10.1016/S0076-6879(04)84010-2