Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin
Molecular dynamics simulations were performed to simulate Ca(2+)-dependent conformational change of calmodulin (CaM). Simulations of the fully Ca(2+)-bound form of CaM (Holo-CaM) and the Ca(2+)-free form (Apo-CaM) were performed in solution for 4 ns starting from the X-ray crystal structure of Holo-...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2002-06, Vol.521 (1-3), p.133-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular dynamics simulations were performed to simulate Ca(2+)-dependent conformational change of calmodulin (CaM). Simulations of the fully Ca(2+)-bound form of CaM (Holo-CaM) and the Ca(2+)-free form (Apo-CaM) were performed in solution for 4 ns starting from the X-ray crystal structure of Holo-CaM. A striking difference was observed between the trajectories of Holo-CaM and Apo-CaM: the central helix remained straight in the former but became largely bent in the latter. Also, the flexibility of Apo-CaM was higher than that of Holo-CaM. The results indicated that the bound Ca(2+) ions harden the structure of CaM. |
---|---|
ISSN: | 0014-5793 |
DOI: | 10.1016/S0014-5793(02)02853-3 |