Evidence that Vector Transmission of a Plant Virus Requires Conformational Change in Virus Particles

Transmission of Cucumber necrosis virus (CNV) by zoospores of its fungal vector, Olpidium bornovanus, involves specific adsorption of virus particles onto the zoospore plasmalemma prior to infestation of cucumber roots by virus-bound zoospores. Previous work has shown that specific components of bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2004-04, Vol.338 (3), p.507-517
Hauptverfasser: Kakani, Kishore, Reade, Ron, Rochon, D'Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transmission of Cucumber necrosis virus (CNV) by zoospores of its fungal vector, Olpidium bornovanus, involves specific adsorption of virus particles onto the zoospore plasmalemma prior to infestation of cucumber roots by virus-bound zoospores. Previous work has shown that specific components of both CNV and zoospores are required for successful CNV/zoospore recognition. Here, we show that limited trypsin digestion of CNV following in vitro CNV/zoospore binding assays, results in the production of specific proteolytic digestion products under conditions where native CNV is resistant. The proteolytic digestion pattern of zoospore-bound CNV was found to be similar to that of swollen CNV particles produced in vitro, suggesting that zoospore-bound CNV is in an altered conformational state, perhaps similar to that of swollen CNV. We show that an engineered CNV mutant (Pro73Gly) in which a conserved proline residue (Pro73) in the β-annulus of the CP arm is changed to glycine is resistant to proteolysis following in vitro zoospore binding assays. Moreover, Pro73Gly particles are transmitted only poorly by O. bornovanus . Together, the results of these studies suggest that CNV undergoes conformational change upon zoospore binding and that the conformational change is important for CNV transmissibility.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2004.03.008