Aromatic Residues Located Close to the Active Center Are Essential for the Catalytic Reaction of Flap Endonuclease-1 from Hyperthermophilic Archaeon Pyrococcus horikoshii

Flap endonuclease-1 (FEN-1) possessing 5′-flap endonuclease and 5′→3′ exonuclease activity plays important roles in DNA replication and repair. In this study, the kinetic parameters of mutants at highly conserved aromatic residues, Tyr33, Phe35, Phe79, and Phe278-Phe279, in the vicinity of the catal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-04, Vol.279 (16), p.16687-16696
Hauptverfasser: Matsui, Eriko, Abe, Junko, Yokoyama, Hideshi, Matsui, Ikuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flap endonuclease-1 (FEN-1) possessing 5′-flap endonuclease and 5′→3′ exonuclease activity plays important roles in DNA replication and repair. In this study, the kinetic parameters of mutants at highly conserved aromatic residues, Tyr33, Phe35, Phe79, and Phe278-Phe279, in the vicinity of the catalytic centers of FEN-1 were examined. The substitution of these aromatic residues with alanine led to a large reduction in kcat values, although these mutants retained Km values similar to that of the wild-type enzyme. Notably, the kcat of Y33A and F79A decreased 333-fold and 71-fold, respectively, compared with that of the wild-type enzyme. The aromatic residues Tyr33 and Phe79, and the aromatic cluster Phe278-Phe279 mainly contributed to the recognition of the substrates without the 3′ projection of the upstream strand (the nick, 5′-recess-end, single-flap, and pseudo-Y substrates) for the both exo- and endo-activities, but played minor roles in recognizing the substrates with the 3′ projection (the double flap substrate and the nick substrate with the 3′ projection). The replacement of Tyr33, Phe79, and Phe278-Phe279, with non-charged aromatic residues, but not with aliphatic hydrophobic residues, recovered the kcat values almost fully for the substrates without the 3′ projection of the upstream strand, suggesting that the aromatic groups of Tyr33, Phe79, and Phe278-Phe279 might be involved in the catalytic reaction, probably via multiple stacking interactions with nucleotide bases. The stacking interactions of Tyr33 and Phe79 might play important roles in fixing the template strand and the downstream strand, respectively, in close proximity to the active center to achieve the productive transient state leading to the hydrolysis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M313695200