Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments
Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate t...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2004-04, Vol.43 (10), p.2093-2101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2101 |
---|---|
container_issue | 10 |
container_start_page | 2093 |
container_title | Applied Optics |
container_volume | 43 |
creator | Amu, Guleng Hasi, Surong Yang, Xingyu Ping, Ziliang |
description | Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate that PJFMs are better than orthogonal Fourier-Mellin moments in terms of reconstruction errors and signal-to-noise ratio. The PJFMs are normalized to shift, rotation, scale, and intensity invariance, and some pattern-recognition experiments are described. |
doi_str_mv | 10.1364/AO.43.002093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71822568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71822568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-483eda226f61dad49299c62c50b11220e279d1d1d816ab5382f2cf134c0bd1813</originalsourceid><addsrcrecordid>eNpFkMFLwzAYxYMobk5vniUnUVhnvi9JmxwUxnA6Geyi4C2kaSqVdu2a9rD_3o4N5B3eO_x4hx8ht8BmwGPxNN_MBJ8xhkzzMzIGyXUkJOL5YUsdAarvEbkK4ZcxLoVOLskIJEuEADUmL6vK_nhqt7bchyLQdE-b4Pusjj6sq9OCPjT0mYop3Q3FH6Nl3beFb2lVV37bhWtykdsy-JtTT8jX8vVz8R6tN2-rxXwdOVRJFwnFfWYR4zyGzGZCo9YuRidZCoDIPCY6gyEKYptKrjBHlwMXjqUZKOATcn_8bdp61_vQmaoIzpel3fq6DyYBhShjNYDTI-jaOoTW56Zpi8q2ewPMHHyZ-cYIbo6-Bvzu9Nunlc_-4ZMg_gdbE2HJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71822568</pqid></control><display><type>article</type><title>Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Amu, Guleng ; Hasi, Surong ; Yang, Xingyu ; Ping, Ziliang</creator><creatorcontrib>Amu, Guleng ; Hasi, Surong ; Yang, Xingyu ; Ping, Ziliang</creatorcontrib><description>Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate that PJFMs are better than orthogonal Fourier-Mellin moments in terms of reconstruction errors and signal-to-noise ratio. The PJFMs are normalized to shift, rotation, scale, and intensity invariance, and some pattern-recognition experiments are described.</description><identifier>ISSN: 1559-128X</identifier><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.43.002093</identifier><identifier>PMID: 15074418</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2004-04, Vol.43 (10), p.2093-2101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-483eda226f61dad49299c62c50b11220e279d1d1d816ab5382f2cf134c0bd1813</citedby><cites>FETCH-LOGICAL-c287t-483eda226f61dad49299c62c50b11220e279d1d1d816ab5382f2cf134c0bd1813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15074418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amu, Guleng</creatorcontrib><creatorcontrib>Hasi, Surong</creatorcontrib><creatorcontrib>Yang, Xingyu</creatorcontrib><creatorcontrib>Ping, Ziliang</creatorcontrib><title>Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate that PJFMs are better than orthogonal Fourier-Mellin moments in terms of reconstruction errors and signal-to-noise ratio. The PJFMs are normalized to shift, rotation, scale, and intensity invariance, and some pattern-recognition experiments are described.</description><issn>1559-128X</issn><issn>0003-6935</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAYxYMobk5vniUnUVhnvi9JmxwUxnA6Geyi4C2kaSqVdu2a9rD_3o4N5B3eO_x4hx8ht8BmwGPxNN_MBJ8xhkzzMzIGyXUkJOL5YUsdAarvEbkK4ZcxLoVOLskIJEuEADUmL6vK_nhqt7bchyLQdE-b4Pusjj6sq9OCPjT0mYop3Q3FH6Nl3beFb2lVV37bhWtykdsy-JtTT8jX8vVz8R6tN2-rxXwdOVRJFwnFfWYR4zyGzGZCo9YuRidZCoDIPCY6gyEKYptKrjBHlwMXjqUZKOATcn_8bdp61_vQmaoIzpel3fq6DyYBhShjNYDTI-jaOoTW56Zpi8q2ewPMHHyZ-cYIbo6-Bvzu9Nunlc_-4ZMg_gdbE2HJ</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Amu, Guleng</creator><creator>Hasi, Surong</creator><creator>Yang, Xingyu</creator><creator>Ping, Ziliang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments</title><author>Amu, Guleng ; Hasi, Surong ; Yang, Xingyu ; Ping, Ziliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-483eda226f61dad49299c62c50b11220e279d1d1d816ab5382f2cf134c0bd1813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amu, Guleng</creatorcontrib><creatorcontrib>Hasi, Surong</creatorcontrib><creatorcontrib>Yang, Xingyu</creatorcontrib><creatorcontrib>Ping, Ziliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amu, Guleng</au><au>Hasi, Surong</au><au>Yang, Xingyu</au><au>Ping, Ziliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>43</volume><issue>10</issue><spage>2093</spage><epage>2101</epage><pages>2093-2101</pages><issn>1559-128X</issn><issn>0003-6935</issn><eissn>1539-4522</eissn><abstract>Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate that PJFMs are better than orthogonal Fourier-Mellin moments in terms of reconstruction errors and signal-to-noise ratio. The PJFMs are normalized to shift, rotation, scale, and intensity invariance, and some pattern-recognition experiments are described.</abstract><cop>United States</cop><pmid>15074418</pmid><doi>10.1364/AO.43.002093</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied Optics, 2004-04, Vol.43 (10), p.2093-2101 |
issn | 1559-128X 0003-6935 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_71822568 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
title | Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20analysis%20by%20pseudo-Jacobi%20(p%20=%204,%20q%20=%203)-Fourier%20moments&rft.jtitle=Applied%20Optics&rft.au=Amu,%20Guleng&rft.date=2004-04-01&rft.volume=43&rft.issue=10&rft.spage=2093&rft.epage=2101&rft.pages=2093-2101&rft.issn=1559-128X&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.43.002093&rft_dat=%3Cproquest_cross%3E71822568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71822568&rft_id=info:pmid/15074418&rfr_iscdi=true |