Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments
Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate t...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2004-04, Vol.43 (10), p.2093-2101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate that PJFMs are better than orthogonal Fourier-Mellin moments in terms of reconstruction errors and signal-to-noise ratio. The PJFMs are normalized to shift, rotation, scale, and intensity invariance, and some pattern-recognition experiments are described. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.43.002093 |