Image analysis by pseudo-Jacobi (p = 4, q = 3)-Fourier moments

Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2004-04, Vol.43 (10), p.2093-2101
Hauptverfasser: Amu, Guleng, Hasi, Surong, Yang, Xingyu, Ping, Ziliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pseudo-Jacobi (p = 4, q = 3)-Fourier moments (PJFMs) based on Jacobi polynomials are described. The new orthogonal radial polynomials have almost uniformly distributed (n + 2) zeros in the region of small radial distance 0 < or = r < or = 1. Both theoretical and experimental results indicate that PJFMs are better than orthogonal Fourier-Mellin moments in terms of reconstruction errors and signal-to-noise ratio. The PJFMs are normalized to shift, rotation, scale, and intensity invariance, and some pattern-recognition experiments are described.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.43.002093