Fate of the Nuclear Lamina during Caenorhabditis elegans Apoptosis
Invertebrates and in Drosophila, lamins and lamin-associated proteins are primary targets for cleavage by caspases. Eliminating mammalian lamins causes apoptosis, whereas expressing mutant lamins that cannot be cleaved by caspase-6 delay apoptosis. Caenorhabditis elegans has a single lamin protein,...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2002-01, Vol.137 (1-2), p.146-153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Invertebrates and in Drosophila, lamins and lamin-associated proteins are primary targets for cleavage by caspases. Eliminating mammalian lamins causes apoptosis, whereas expressing mutant lamins that cannot be cleaved by caspase-6 delay apoptosis. Caenorhabditis elegans has a single lamin protein, Ce-lamin, and a caspase, CED-3, that is responsible for most if not all somatic apoptosis. In this study we show that in C. elegans embryos induced to undergo apoptosis Ce-lamin is degraded surprisingly late. In such embryos CED-4 translocated to the nuclear envelope but the cytological localization of Ce-lamin remained similar to that in wild-type embryos. TUNEL labeling indicated that Ce-lamin was degraded only after DNA is fragmented. Ce-lamin, Ce-emerin, or Ce-MAN1 were not cleaved by recombinant CED-3, showing that these lamina proteins are not substrates for CED-3 cleavage. These results suggest that lamin cleavage probably is not essential for apoptosis in C. elegans. |
---|---|
ISSN: | 1047-8477 1095-8657 |
DOI: | 10.1006/jsbi.2002.4452 |