Immunomodulatory effects of prolactin and growth hormone in the tilapia, Oreochromis mossambicus
To clarify the roles of prolactin (PRL) and GH in the control of the immune system, the effects of environmental salinity, hypophysectomy, and PRL and GH administration on several immune functions were examined in tilapia (Oreochromis mossambicus). Transfer from fresh water (FW) to seawater (SW) did...
Gespeichert in:
Veröffentlicht in: | Journal of endocrinology 2002-06, Vol.173 (3), p.483-492 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To clarify the roles of prolactin (PRL) and GH in the control of the immune system, the effects of environmental salinity, hypophysectomy, and PRL and GH administration on several immune functions were examined in tilapia (Oreochromis mossambicus). Transfer from fresh water (FW) to seawater (SW) did not alter plasma levels of immunoglobulin M (IgM) and lysozyme. The superoxide anion (O(2)(-)) production in head kidney leucocytes accompanied by phagocytosis was elevated in SW-acclimated fish over the levels observed in FW fish. Hypophysectomy of the fish in FW resulted in a reduction in O(2)(-) production in leucocytes isolated from the head kidney, whereas there was no significant change in plasma levels of IgM or lysozyme. Treatment with tilapia GH and PRLs (PRL(177) and PRL(188)) enhanced O(2)(-) production in vitro in head kidney leucocytes in a dose-related manner. Extrapituitary expression of two PRLs, GH and IGF-I mRNA was detected in lymphoid tissues and cells such as head kidney, spleen, intestine and leucocytes from peripheral blood and head kidney. PRL-receptor mRNA was detected in head kidney leucocytes, and the level of expression was higher in SW-acclimated fish than that in FW fish. Treatment with PRL(177) caused higher production of O(2)(-) in the head kidney leucocytes isolated from SW tilapia than that from FW fish. In view of the fact that PRL acts antagonistically to osmoregulation in SW, its immunomodulatory actions in this euryhaline fish would appear to be independent of its osmoregulatory action. |
---|---|
ISSN: | 0022-0795 1479-6805 |
DOI: | 10.1677/joe.0.1730483 |