Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks
Intrinsic (innate) and acquired (adaptive) resistance to chemotherapy critically limits the outcome of cancer treatments. For many years, it was assumed that the interaction of a drug with its molecular target would yield a lethal lesion, and that determinants of intrinsic drug resistance should the...
Gespeichert in:
Veröffentlicht in: | Oncogene 2004-04, Vol.23 (16), p.2934-2949 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intrinsic (innate) and acquired (adaptive) resistance to chemotherapy critically limits the outcome of cancer treatments. For many years, it was assumed that the interaction of a drug with its molecular target would yield a lethal lesion, and that determinants of intrinsic drug resistance should therefore be sought either at the target level (quantitative changes or/and mutations) or upstream of this interaction, in drug metabolism or drug transport mechanisms. It is now apparent that independent of the factors above, cellular responses to a molecular lesion can determine the outcome of therapy. This review will focus on programmed cell death (apoptosis) and on survival pathways (Bcl-2, Apaf-1, AKT, NF-
κ
B) involved in multidrug resistance. We will present our molecular interaction mapping conventions to summarize the AKT and I
κ
B/NF-
κ
B networks. They complement the p53, Chk2 and c-Abl maps published recently. We will also introduce the ‘permissive apoptosis-resistance’ model for the selection of multidrug-resistant cells. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/sj.onc.1207515 |