Shape deformations in rough-surface scattering: improved algorithms

We present new, stabilized shape-perturbation methods for calculations of scattering from rough surfaces. For practical purposes, we present new algorithms for both low- (first- and second-) and high-order implementations. The new schemes are designed with guidance from our previous results that unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2004-04, Vol.21 (4), p.606-621
Hauptverfasser: NICHOLLS, David P, REITICH, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present new, stabilized shape-perturbation methods for calculations of scattering from rough surfaces. For practical purposes, we present new algorithms for both low- (first- and second-) and high-order implementations. The new schemes are designed with guidance from our previous results that uncovered the basic mechanism behind the instabilities that can arise in methods based on shape perturbations [D. P. Nicholls and F. Reitich, J. Opt. Soc. Am. A 21, 590 (2004)]. As was shown there, these instabilities stem from significant cancellations that are inevitably present in the recursions underlying these methods. This clear identification of the source of instabilities resulted also in a collection of guiding principles, which we now test and confirm. As predicted, improved low-order algorithms can be attained from an explicit consideration of the recurrence. At high orders, on the other hand, the complexity of the formulas precludes an explicit account of cancellations. In this case, however, the theory suggests a number of alternatives to implicitly mollify them. We show that two such alternatives, based on a change of independent variables and on Dirichlet-to-interior-derivative operators, respectively, successfully resolve the cancellations and thus allow for very-high-order calculations that can significantly expand the domain of applicability of shape-perturbation approaches.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.21.000606