A mechanogated nonselective cation channel in proximal tubule that is ATP sensitive

Ion channels that are gated in response to membrane deformation or "stretch" are empirically designated stretch-activated channels. Here we describe a stretch-activated nonselective cation channel in the basolateral membrane (BLM) of the proximal tubule (PT) that is nucleotide sensitive. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2002-07, Vol.283 (1), p.F93-F104
Hauptverfasser: Hurwitz, Craig G, Hu, Vivian Y, Segal, Alan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion channels that are gated in response to membrane deformation or "stretch" are empirically designated stretch-activated channels. Here we describe a stretch-activated nonselective cation channel in the basolateral membrane (BLM) of the proximal tubule (PT) that is nucleotide sensitive. Single channels were studied in cell-intact and cell-free patches from the BLM of PT cells that maintain their epithelial polarity. The limiting inward Cs+ conductance is ~28 pS, and channel activity persists after excision into a Ca2+- and ATP-free bath. The stretch-dose response is sigmoidal, with half-maximal activation of about -19 mmHg at -40 mV, and the channel is activated by depolarization. The inward conductance sequence is: NH ~ Cs+ ~ Rb+ > K+ ~ Na+ ~ Li+ > Ca2+ ~ Ba2+ > N-methyl-D-glucamine ~ tetraethylammonium. The venom of the common Chilean tarantula, Grammostola spatulata, completely blocks channel activity in cell-attached patches. Hypotonic swelling reversibly activates the channel. Intracellular ATP concentration ([ATP]i) reversibly blocks the channel (inhibitory constant approximately 0.48 mM), suggesting that channel function is coupled to the metabolic state of the cell. We conclude that this channel may function as a Ca2+ entry pathway and/or be involved in regulation of cell volume. We speculate this channel may be important when [ATP]i is depleted, as occurs during periods of increased transepithelial transport or with ischemic injury.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00239.2001