Forward Translocation Is the Natural Pathway of RNA Release at an Intrinsic Terminator

Intrinsic terminators of bacterial RNA polymerase are small (< ∼30 bp) sequences containing a dyad symmetry that encodes a hairpin in the RNA, followed immediately by a uridine-rich stretch of 5–9 nucleotides just before the site of RNA release. Formation of the RNA hairpin destabilizes the elong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2004-04, Vol.14 (1), p.117-126
Hauptverfasser: Santangelo, Thomas J, Roberts, Jeffrey W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intrinsic terminators of bacterial RNA polymerase are small (< ∼30 bp) sequences containing a dyad symmetry that encodes a hairpin in the RNA, followed immediately by a uridine-rich stretch of 5–9 nucleotides just before the site of RNA release. Formation of the RNA hairpin destabilizes the elongation complex, leading to transcript release. We test a model in which hair-pin formation drives RNA polymerase and the melted DNA bubble downstream without transcript elongation, thus releasing the transcript from its enclosure within the enzyme as an RNA/DNA hybrid. We show that blocking downstream translocation of RNAP and preventing downstream DNA unwinding both inhibit transcript release. We argue that translocation of RNA polymerase is essential and that translocation of the bubble stimulates, but is not required, for RNA release; we conclude that forward translocation is the natural pathway of RNA release at an intrinsic terminator.
ISSN:1097-2765
1097-4164
DOI:10.1016/S1097-2765(04)00154-6