Device Based Left Ventricular Shape Change: Validation of Conductance Technology in Shape Changed Hearts
We have reported that device based left ventricular (LV) shape change, accomplished by Myosplint, improved LV systolic function by three-dimensional echocardiography (3-D echo). However, evaluation of this device using the pressure-volume relationship is still important. This study was conducted to...
Gespeichert in:
Veröffentlicht in: | ASAIO journal (1992) 2002-05, Vol.48 (3), p.268-271 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have reported that device based left ventricular (LV) shape change, accomplished by Myosplint, improved LV systolic function by three-dimensional echocardiography (3-D echo). However, evaluation of this device using the pressure-volume relationship is still important. This study was conducted to validate the use of conductance technology for this evaluation in shape-changed hearts. An ex vivo study using excised ovine hearts (n = 11) and an in vivo study using a canine pacing-induced heart failure model (n = 11) were performed. Three Myosplints were implanted. Before and after the shape changes, volumes measured by a conductance catheter were compared with volumes measured by the amount of saline in the ex vivo study or by 3-D echo in the in vivo study. The conductance volumes were linearly correlated with the saline volumes (r = 0.961 ± 0.046;p < 0.0001) in the ex vivo study and with 3-D echo volumes (r = 0.757 ± 0.220;p < 0.0001) in the in vivo study. The conductance volumes were linearly correlated with LV volumes even in the shape-changed hearts. This technology can be used to evaluate pressure-volume loops in the shape-changed hearts as long as the conductance volume is calibrated by a reliable method. |
---|---|
ISSN: | 1058-2916 1538-943X |
DOI: | 10.1097/00002480-200205000-00012 |