Spatial and seasonal variation in amino compounds in the xylem sap of a mistletoe (Viscum album) and its hosts (Populus spp. and Abies alba)

In a field study, the composition and concentrations of amino compounds in the xylem sap of the mistletoe, Viscum album L., and in the xylem sap of two host species, an evergreen conifer (Abies alba Mill.) and a deciduous broad-leaved tree (Populus x euramericana), were analyzed. The xylem sap of bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree physiology 2004-06, Vol.24 (6), p.639-650
Hauptverfasser: Escher, P, Eiblmeier, M, Hetzger, I, Rennenberg, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a field study, the composition and concentrations of amino compounds in the xylem sap of the mistletoe, Viscum album L., and in the xylem sap of two host species, an evergreen conifer (Abies alba Mill.) and a deciduous broad-leaved tree (Populus x euramericana), were analyzed. The xylem sap of both hosts and mistletoe contained large, but similar amounts of total organic nitrogen in low molecular weight amino compounds (TONLW). Nevertheless, individual amino compounds accumulated in the xylem sap of mistletoe relative to the host xylem sap, indicating selective uptake. In the xylem sap of Populus, major amino compounds (asparagine (Asn) and glutamine (Gln)) and the bulk parameters, TONLW and proteinogenic amino acids, showed significant seasonal variation. In Abies and in mistletoe on either host, variation of amino compounds in xylem sap was largely explained by inter-annual differences, not by seasonal variation. In both hosts, TONLW in the xylem sap was dominated by Gln. There was a steady decrease in relative abundance of Gln from the host xylem sap to the mistletoe xylem sap and to the stems and leaves of mistletoe. Simultaneously, the abundance of arginine (Arg) increased. Arginine was the predominant amino compound in the stems and leaves of mistletoe, occurring at concentrations previously observed only in leaves of trees exposed to excess nitrogen. We conclude that Gln (2 mol N mol-1) delivered by the host xylem sap is converted, in mistletoe, to Arg (4 mol N mol-1) and that the organic carbon liberated from Gln contributes significantly to the parasite's heterotrophic carbon gain. Statistical analyses of the data support this conclusion. Accumulation of Arg in mistletoe is an indication of excess N supply as a result of the uptake of amino compounds from the host xylem sap and a lack of phloem uploading.
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/24.6.639