Wavelet networks for face processing
Wavelet networks (WNs) were introduced in 1992 as a combination of artificial neural radial basis function (RBF) networks and wavelet decomposition. Since then, however, WNs have received only a little attention. We believe that the potential of WNs has been generally underestimated. WNs have the ad...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2002-06, Vol.19 (6), p.1112-1119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wavelet networks (WNs) were introduced in 1992 as a combination of artificial neural radial basis function (RBF) networks and wavelet decomposition. Since then, however, WNs have received only a little attention. We believe that the potential of WNs has been generally underestimated. WNs have the advantage that the wavelet coefficients are directly related to the image data through the wavelet transform. In addition, the parameters of the wavelets in the WNs are subject to optimization, which results in a direct relation between the represented function and the optimized wavelets, leading to considerable data reduction (thus making subsequent algorithms much more efficient) as well as to wavelets that can be used as an optimized filter bank. In our study we analyze some WN properties and highlight their advantages for object representation purposes. We then present a series of results of experiments in which we used WNs for face tracking. We exploit the efficiency that is due to data reduction for face recognition and face-pose estimation by applying the optimized-filter-bank principle of the WNs. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.19.001112 |