NIPP1-mediated Interaction of Protein Phosphatase-1 with CDC5L, a Regulator of Pre-mRNA Splicing and Mitotic Entry

NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-08, Vol.275 (33), p.25411-25417
Hauptverfasser: Boudrez, An, Jagiello, Izabela, Stalmans, Willy, Beullens, Monique, Groenen, Peter, Van Eynde, Aleyde, Vulsteke, Veerle, Murray, Michael, Krainer, Adrian R., Bollen, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G2/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g.by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G2/M transition. However, the FHA domain blocked β-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M001676200