Endonuclease G, a Candidate Human Enzyme for the Initiation of Genomic Inversion in Herpes Simplex Type 1 Virus
The herpes simplex virus type 1 (HSV-1)a sequence is present as a direct repeat at the two termini of the 152-kilobase viral genome and as an inverted repeat at the junction of the two unique components L and S. During replication, the HSV-1 genome undergoes inversion of L and S, producing an equimo...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-06, Vol.277 (23), p.21071-21079 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The herpes simplex virus type 1 (HSV-1)a sequence is present as a direct repeat at the two termini of the 152-kilobase viral genome and as an inverted repeat at the junction of the two unique components L and S. During replication, the HSV-1 genome undergoes inversion of L and S, producing an equimolar mixture of the four possible isomers. Isomerization is believed to result from recombination triggered by breakage at the a sequence, a recombinational hot spot. We have identified an enzyme in HeLa cell extracts that preferentially cleaves the a sequence and have purified it to near homogeneity. Microsequencing showed it to be human endonuclease G, an enzyme with a strong preference for G+C-rich sequences. Endonuclease G appears to be the only cellular enzyme that can specifically cleave the a sequence. Endonuclease G also showed the predicted recombination properties in an in vitro recombination assay. Based on these findings, we propose that endonuclease G initiates the a sequence-mediated inversion of the L and S components during HSV-1 DNA replication. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M201785200 |