Endonuclease G, a Candidate Human Enzyme for the Initiation of Genomic Inversion in Herpes Simplex Type 1 Virus

The herpes simplex virus type 1 (HSV-1)a sequence is present as a direct repeat at the two termini of the 152-kilobase viral genome and as an inverted repeat at the junction of the two unique components L and S. During replication, the HSV-1 genome undergoes inversion of L and S, producing an equimo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-06, Vol.277 (23), p.21071-21079
Hauptverfasser: Huang, Ke-Jung, Zemelman, Boris V., Lehman, I. Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The herpes simplex virus type 1 (HSV-1)a sequence is present as a direct repeat at the two termini of the 152-kilobase viral genome and as an inverted repeat at the junction of the two unique components L and S. During replication, the HSV-1 genome undergoes inversion of L and S, producing an equimolar mixture of the four possible isomers. Isomerization is believed to result from recombination triggered by breakage at the a sequence, a recombinational hot spot. We have identified an enzyme in HeLa cell extracts that preferentially cleaves the a sequence and have purified it to near homogeneity. Microsequencing showed it to be human endonuclease G, an enzyme with a strong preference for G+C-rich sequences. Endonuclease G appears to be the only cellular enzyme that can specifically cleave the a sequence. Endonuclease G also showed the predicted recombination properties in an in vitro recombination assay. Based on these findings, we propose that endonuclease G initiates the a sequence-mediated inversion of the L and S components during HSV-1 DNA replication.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M201785200