Cardiac effects of hypoxia in the neotenous tiger salamander Ambystoma tigrinum
The aquatic form of the tiger salamander Ambystoma tigrinum lives in high-altitude ponds and is exposed to a hypoxic environment that may be either chronic or intermittent. In many animal species, exposure to hypoxia stimulates cardiac output and is followed by an increase in cardiac mass. The worki...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2002-06, Vol.205 (Pt 12), p.1725-1734 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aquatic form of the tiger salamander Ambystoma tigrinum lives in high-altitude ponds and is exposed to a hypoxic environment that may be either chronic or intermittent. In many animal species, exposure to hypoxia stimulates cardiac output and is followed by an increase in cardiac mass. The working hypothesis of the present study was that the hearts of these aquatic salamanders exposed to 10-14 days of 5 % oxygen in a laboratory setting would become larger and would differentially express proteins that would help confer tolerance to hypoxia. During exposure to hypoxia, cardiac output increased, as did hematocrit. Cardiac mass also increased, but mitotic figures were not detected in the cardiac myocytes of colchicine-injected animals. The mass increase was probably due to hypertrophy, although a very slow rate of hyperplasia cannot be ruled out. Representational difference analysis indicated that at least 14 mRNAs were expressed in hearts from the hypoxic animals that were not expressed in hearts from normoxic animals. The differentially expressed genes were cloned and sequenced and confirmed as coming from the ventricles of the hypoxic salamanders. Genes differentially expressed include mitochondrial genes and genes for elongation factor 2, a protein synthesis gene. The mechanical performance of buffer-perfused hearts isolated from normoxic and hypoxic animals did not differ. Acute responses to hypoxia were also measured. The rate of oxygen consumption of unanesthetized salamanders in metabolism chambers decreased when chamber oxygen concentration was reduced below 12 % oxygen. At a chamber oxygen concentration of 4-6 %, the rate of oxygen consumption of the salamanders was reduced to approximately one-third of the normoxic rate. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.205.12.1725 |