Toxoplasma as a novel system for motility
Motility is a characteristic of most living organisms and often requires specialized structures like cilia or flagella. An alternative is amoeboid movement, where the polymerization/depolymerization of actin leads to the formation of pseudopodia, filopodia and/or lamellipodia that enable the cell to...
Gespeichert in:
Veröffentlicht in: | Current opinion in cell biology 2004-02, Vol.16 (1), p.32-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motility is a characteristic of most living organisms and often requires specialized structures like cilia or flagella. An alternative is amoeboid movement, where the polymerization/depolymerization of actin leads to the formation of pseudopodia, filopodia and/or lamellipodia that enable the cell to crawl along a surface. Despite their lack of locomotive organelles and in absence of cell deformation, members of the apicomplexan parasites employ a unique form of locomotion called gliding motility to promote their migration across biological barriers and to power host-cell invasion and egress. Detailed studies in
Toxoplasma gondii and
Plasmodium species have revealed that this unique mode of movement is dependent on a myosin of class XIV and necessitates actin dynamics and the concerted discharge and processing of adhesive proteins. Gliding is essential for the survival and infectivity of these obligate intracellular parasites, which cause severe disease in humans and animals. |
---|---|
ISSN: | 0955-0674 1879-0410 |
DOI: | 10.1016/j.ceb.2003.11.013 |