Design, Synthesis, and Activity of a Novel Series of Factor Xa Inhibitors:  Optimization of Arylamidine Groups

A novel series of diaryloxypyridines have been designed as selective nanomolar factor Xa (fXa) inhibitors for use as anticoagulants. In this paper, we describe our efforts to identify an additional interaction and a replacement for the distal amidine group that binds in the S3/S4 pocket of fXa. Intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2002-06, Vol.45 (12), p.2484-2493
Hauptverfasser: Phillips, Gary, Guilford, William J, Buckman, Brad O, Davey, David D, Eagen, Keith A, Koovakkat, Sunil, Liang, Amy, McCarrick, Meg, Mohan, Raju, Ng, Howard P, Pinkerton, Michael, Subramanyam, Babu, Ho, Elena, Trinh, Lan, Whitlow, Marc, Wu, Shung, Xu, Wei, Morrissey, Michael M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel series of diaryloxypyridines have been designed as selective nanomolar factor Xa (fXa) inhibitors for use as anticoagulants. In this paper, we describe our efforts to identify an additional interaction and a replacement for the distal amidine group that binds in the S3/S4 pocket of fXa. Introduction of a hydroxyl group para to the proximal amidine group increases the potency vs fXa by 1−2 orders of magnitude, which is the result of a hydrogen bond to Ser195 of the catalytic triad. A methyl imidazoline and a dimethylamide are good alternatives for the second amidine. These substitutions have increased the selectivity vs the related serine proteases trypsin and thrombin. The synthesis, in vitro activity, and hypothetical modes of binding to fXa based on trypsin crystallographic data are outlined.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm0200660