Differential growth, cell proliferation, and apoptosis of mouse embryo in various culture media and in coculture
Sequential culture and coculture are two methods of improving the development of preimplantation embryos in vitro. Direct comparison of the efficiency of these methods is limited. Proliferation and apoptosis determine the total number of blastomere in preimplantation embryo, which is a sensitive par...
Gespeichert in:
Veröffentlicht in: | Molecular reproduction and development 2004-05, Vol.68 (1), p.72-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sequential culture and coculture are two methods of improving the development of preimplantation embryos in vitro. Direct comparison of the efficiency of these methods is limited. Proliferation and apoptosis determine the total number of blastomere in preimplantation embryo, which is a sensitive parameter for evaluation of the development of embryo in vitro. In this study, we compared the proliferation and apoptosis of mouse embryo in different culture media, including CZB, KSOM, MTF, G1.2/G2.2 sequential culture media, and in human oviductal cell coculture. Sequential culture using G1.2/G2.2 was superior to KSOM, MTF, and CZB/CZB + G with respect to the formation of 3–4 cell embryos, morula, and blastocyst. G1.2/G2.2 cultured blastocyst had significantly more proliferating blastomeres and higher total cell number per blastocyst than those cultured in KSOM or CZB/CZB + G. Compared to embryos cultured in G1.2/G2.2, embryos cocultured in G1.2/G2.2 hatched more frequently. Cocultured blastocysts also had significantly higher percentage of proliferating cell and lower percentage of apoptotic cell per blastocyst than those cultured in G1.2/G2.2. It was concluded that G1.2/G2.2 facilitated the proliferation of blastomere whilst human oviductal cell coculture suppressed apoptosis in addition to stimulating proliferation of blastomere. Mol. Reprod. Dev. 68: 72–80, 2004. © 2004 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1040-452X 1098-2795 |
DOI: | 10.1002/mrd.20048 |