Repression of Promoter Activity by CNOT2, a Subunit of the Transcription Regulatory Ccr4-Not Complex

The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-03, Vol.279 (12), p.10848-10854
Hauptverfasser: Zwartjes, Carin G.M., Jayne, Sandrine, van den Berg, Debbie L.C., Timmers, H.T. Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual core subunits of the human Ccr4-Not complex to promoters in transient transfections of human cells. In this experimental setup we found that the CNOT2 and CNOT9(hRcd1/hCaf40) subunits act as repressors of reporter gene activity. Interestingly, recruitment of other Ccr4-Not subunits did not affect the reporter gene. The major repression function of CNOT2 is localized in a specialized protein motif, the Not-Box. This conserved motif is present in all CNOT2 orthologs and surprisingly also in CNOT3 orthologs. Repression by the Not-Box was sensitive to treatment with the histone deacetylase inhibitor trichostatin A. In addition, mutation of a canonical TATA-box enhanced repression. Our experiments show for the first time direct regulation of promoter activity by components of the Ccr4-Not complex.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M311747200