Repression of Promoter Activity by CNOT2, a Subunit of the Transcription Regulatory Ccr4-Not Complex
The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual c...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-03, Vol.279 (12), p.10848-10854 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolutionary conserved Ccr4-Not complex controls mRNA metabolism at multiple levels in eukaryotic cells. Genetic analysis of not mutants in yeast identifies a negative role in transcription, which is dependent on core promoter structure. To obtain direct support for this we targeted individual core subunits of the human Ccr4-Not complex to promoters in transient transfections of human cells. In this experimental setup we found that the CNOT2 and CNOT9(hRcd1/hCaf40) subunits act as repressors of reporter gene activity. Interestingly, recruitment of other Ccr4-Not subunits did not affect the reporter gene. The major repression function of CNOT2 is localized in a specialized protein motif, the Not-Box. This conserved motif is present in all CNOT2 orthologs and surprisingly also in CNOT3 orthologs. Repression by the Not-Box was sensitive to treatment with the histone deacetylase inhibitor trichostatin A. In addition, mutation of a canonical TATA-box enhanced repression. Our experiments show for the first time direct regulation of promoter activity by components of the Ccr4-Not complex. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M311747200 |