Predicting Protein−Ligand Binding Affinities Using Novel Geometrical Descriptors and Machine-Learning Methods

Inspired by the concept of knowledge-based scoring functions, a new quantitative structure−activity relationship (QSAR) approach is introduced for scoring protein−ligand interactions. This approach considers that the strength of ligand binding is correlated with the nature of specific ligand/binding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Information and Computer Sciences 2004-03, Vol.44 (2), p.699-703
Hauptverfasser: Deng, Wei, Breneman, Curt, Embrechts, Mark J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspired by the concept of knowledge-based scoring functions, a new quantitative structure−activity relationship (QSAR) approach is introduced for scoring protein−ligand interactions. This approach considers that the strength of ligand binding is correlated with the nature of specific ligand/binding site atom pairs in a distance-dependent manner. In this technique, atom pair occurrence and distance-dependent atom pair features are used to generate an interaction score. Scoring and pattern recognition results obtained using Kernel PLS (partial least squares) modeling and a genetic algorithm-based feature selection method are discussed.
ISSN:0095-2338
1549-9596
1549-960X
DOI:10.1021/ci034246+