Surface-Alkylated Polystyrene Monolithic Columns for Peptide Analysis in Capillary Liquid Chromatography−Electrospray Ionization Mass Spectrometry

Macroporous poly(styrene−divinylbenzene) (PS-DVB) monoliths were prepared by in situ polymerization in PEEK, fused silica, or stainless steel tubing having an inner diameter of 75 or 125 μm. A process is described for subsequent alkylation of the flow-contacting surfaces of the monoliths. The proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2002-05, Vol.74 (10), p.2336-2344
Hauptverfasser: Huang, Xian, Zhang, Sheng, Schultz, Gary A, Henion, Jack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macroporous poly(styrene−divinylbenzene) (PS-DVB) monoliths were prepared by in situ polymerization in PEEK, fused silica, or stainless steel tubing having an inner diameter of 75 or 125 μm. A process is described for subsequent alkylation of the flow-contacting surfaces of the monoliths. The process treats all the surfaces including through-pore surfaces of the rigid macroporous monolith with a solution containing a dissolved Friedel−Crafts catalyst, an alkyl halide (1-chlorooctadecane), and an organic solvent. This process produces an improved reversed-phase liquid chromatographic separation of peptides compared to an unmodified monolithic PS-DVB column. The surface octadecylation is not necessary for a reversed-phase separation of proteins since both unmodified and modified columns provide comparable results. Tryptic protein digests, standard proteins, and standard peptides were used to evaluate the monolithic columns by employing electrospray mass spectrometry detection. Potential applications in proteomics studies by mass spectrometry, which use the alkylated monolithic column engaged onto the nanofabricated electrospray ionization chip, are also discussed.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac011202w