Asymmetric Benzoin Condensation Catalyzed by Chiral Rotaxanes Tethering a Thiazolium Salt Moiety via the Cooperation of the Component:  Can Rotaxane Be an Effective Reaction Field?

Although some reactions on rotaxanes have been reported, the characteristic features of the rotaxanes providing unique reaction fields have hardly been studied, especially as catalyst. In our continuous studies on interlocked molecules such as rotaxanes and catenanes, we have noticed the importance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2004-03, Vol.126 (11), p.3438-3439
Hauptverfasser: Tachibana, Yuya, Kihara, Nobuhiro, Takata, Toshikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although some reactions on rotaxanes have been reported, the characteristic features of the rotaxanes providing unique reaction fields have hardly been studied, especially as catalyst. In our continuous studies on interlocked molecules such as rotaxanes and catenanes, we have noticed the importance of such interlocked structures with high freedom in functionalized materials such as molecular catalyst. For catalytic asymmetric benzoin condensations, two optically active rotaxanes possessing thiazolium salt moieties were prepared using the binaphthyl group as the chiral auxiliary. The benzoin condensations of aromatic aldehydes catalyzed by the chiral rotaxanes as catalysts gave optically active benzoins with ca. 30% ee in moderate to high chemical yields depending upon the structure of rotaxane and the reaction conditions employed. From the results, two intrarotaxane chirality transfers are confirmed:  (i) through-space chirality transfer from wheel to axle and (ii) through-bond chirality transfer controlled with an achiral wheel. Because these asymmetric reaction fields are specific to the rotaxane structure, the importance and possibility of the “rotaxane field” as a particular reaction field is demonstrated in this work.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja039461l