All Four Sendai Virus C Proteins Bind Stat1, but only the Larger Forms also Induce Its Mono-ubiquitination and Degradation
Sendai virus infection strongly induces interferon (IFN) production and has recently been shown to interdict the subsequent IFN signaling through the Jak/Stat pathway. This anti-IFN activity of SeV is due to its “C” proteins, a nested set of four proteins (C′, C, Y1, Y2) that carry out a nested set...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 2002-04, Vol.295 (2), p.256-265 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sendai virus infection strongly induces interferon (IFN) production and has recently been shown to interdict the subsequent IFN signaling through the Jak/Stat pathway. This anti-IFN activity of SeV is due to its “C” proteins, a nested set of four proteins (C′, C, Y1, Y2) that carry out a nested set of functions in countering the innate immune response. We previously reported that all four C proteins interact with Stat1 to prevent IFN signaling through the Jak/Stat pathway. Nevertheless, only the longer C proteins reduced Stat1 levels and prevented IFN from inducing an antiviral (VSV) state, or apoptosis, in IFN-competent murine cells. Here, we investigate the mechanism by which the various C proteins differentially affect the host antiviral defenses. All four C proteins were found to physically associate with Stat1 during cell culture infections, and in vitro in the absence of other viral gene products (as evidenced by co-immunoprecipitation). In addition, the inability of a null mutant (CF170S) to bind Stat1 suggests that this interaction is physiologically relevant. We have also shown that the proteasomal inhibitor MG132 can prevent the C protein-induced dismantling of the antiviral (VSV) state in murine cells; thus, the turnover of Stat1 correlates with the C protein-mediated counteraction of the antiviral (VSV) state. The C protein-induced instability of Stat1 was accompanied by a clear increase in the level of mono-ubiquinated Stat1, an unexpected hallmark of protein degradation. Finally, we show that a rSeV with mutant C proteins but wild-type Y proteins (CΔ10–15, that does not counteract the endogenous antiviral (VSV) state of MEFs even though their C proteins bind Stat1 and prevent its activity) is also unable to decrease bulk Stat1 levels or to increase the level of ubiquinated Stat1. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1006/viro.2001.1342 |