Detection of Negative Ions from Individual Ultrafine Particles

Aerosol mass spectrometers can be used to classify individual airborne particles on the basis of chemical composition. While positive ion mass spectra are normally used to characterize ultrafine particles (defined here as particles smaller than 200 nm in diameter), negative ion mass spectra can prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2002-05, Vol.74 (9), p.2092-2096
Hauptverfasser: Kane, David B, Wang, Jinjin, Frost, Keith, Johnston, Murray V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerosol mass spectrometers can be used to classify individual airborne particles on the basis of chemical composition. While positive ion mass spectra are normally used to characterize ultrafine particles (defined here as particles smaller than 200 nm in diameter), negative ion mass spectra can provide complementary information. To effectively utilize the negative ion mass spectra of ultrafine particles, it is important to understand biases in the formation and detection of negative ions. It is found that the intensity of negative ions is generally less than that of positive ions, due to the creation of electrons in the ablation process that must react to form negative ions. The ablation efficiency, defined as the probability that an ablated particle produces a detectable ion signal, exhibits both size and composition dependencies. The ablation efficiency for detection of negative ions follows the same trends as the ablation efficiency for the detection of positive ions:  sodium chloride and ammonium nitrate have higher ablation efficiencies than oleic acid, and the ablation efficiency decreases with the particle diameter. The ablation efficiency of negative ions is less than or equal to the ablation efficiency of positive ions, and the relative difference increases as the particle diameter decreases. Pure ammonium sulfate particles exhibit an ablation efficiency too low to be measured in the present experiments. However, trace amounts of sulfate in mixed-composition particles can be readily detected in the negative ion mass spectra.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac011126x