In Vitro Acetylation of HMGB-1 and -2 Proteins by CBP:  the Role of the Acidic Tail

Histone acetyltransferases CBP, PCAF, and Tip60 have been tested for their ability to in vitro acetylate HMGB-1 and -2 proteins and their truncated forms lacking the C-terminal tail. It was found that these proteins were substrates for CBP only. Analyses of modified proteins by electrophoresis, amin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2004-03, Vol.43 (10), p.2935-2940
Hauptverfasser: Pasheva, Evdokia, Sarov, Mihail, Bidjekov, Kiril, Ugrinova, Iva, Sarg, Bettina, Lindner, Herbert, Pashev, Iliya G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histone acetyltransferases CBP, PCAF, and Tip60 have been tested for their ability to in vitro acetylate HMGB-1 and -2 proteins and their truncated forms lacking the C-terminal tail. It was found that these proteins were substrates for CBP only. Analyses of modified proteins by electrophoresis, amino acid sequencing, and mass spectrometry showed that full-length HMGB-1 and -2 were monoacetylated at Lys2. Removal of the C terminus resulted in (i) an increased incorporation of radiolabeled acetate within the proteins to a level close to that observed with histones H3/H4 and (ii) creation of a novel target site at Lys81. Acetylated and nonmodified HMGB-1 and -2 protein lacking the acidic tail were compared relative to their binding affinity to distorted DNA and the ability to bend linear DNA. Both proteins showed similar affinities to cisplatin-damaged DNA; the acetylated protein, however, was 3-fold more effective in inducing ligase-mediated circularization of a 111-bp DNA fragment. The alterations in the acetylation pattern of HMGB-1 and -2 upon removal of the C-terminal tail are regarded as a means by which the acidic domain modulates some properties of these proteins.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi035615y